Role of MUC1 in Acute Kidney Injury and Recovery

REBECCA P HUGHEY
MUC1 is a glycoprotein expressed on the apical surface of polarized epithelial cells
- Localized to the distal tubule and collecting duct of kidney

Near perfect tandem repeats

(PD/ET/SRPAPGSTAPP/AAHGVTSA)

Autocatalytic cleavage within SEA module (sea urchin sperm protein, enterokinase and agrin)

Sequence highly conserved across species
- Multiple sites for kinase and adaptor docking, Cys-palmitoylation
MUC1 cyttoplasmic domain is a scaffold for protein docking

- Atypical nuclear localization motif
- *AP-2 clathrin adaptor binding
- *Grb2 binding to pYXNP/V
- *Cys dual palmitoylation
- p85 binds pYXXM
- PKCδ phosphorylates Thr41
- GSK-3β binding SXXXS site and phosphorylation of Ser44
- Tyr46 phosphorylation by EGFR, c-Src or Lyn kinases

CQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSSTDSPYEKVSAGNGSSLSSYTNPAVAATSANL – COO-

\[\beta - \text{catenin binding motif} \]
Growth of HK-2 cells under hypoxic conditions (1% O₂) produced a non-lethal but dysfunctional phenotype (8-36 h).

- Cell proliferation diminished (³H-thymidine uptake)
- No necrosis (LDH in medium)
- No apoptosis (annexin V staining)
- Morphology altered:
 - Decreased number of intercellular junctions (EM)
 - Increased paracellular permeability after 24 h (FITC-dextran)

- Microarray showed 48 genes induced by hypoxia including
 - HIF1α
 - VEGF
 - MUC1
- MUC1 gene has hypoxia-responsive elements for HIF1α binding
MUC1 is induced in a proximal tubule HK-2 cell line by hypoxia

<table>
<thead>
<tr>
<th>Time</th>
<th>8 h, n = 3</th>
<th>24 h, n = 3</th>
<th>96 h, n = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td>Hypox</td>
<td>Ctrl</td>
<td>Hypox</td>
</tr>
<tr>
<td>b-actin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUC1 CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fold diff.</td>
<td>3.5 ± 2.5</td>
<td>3.5 ± 1.0 *</td>
<td>3.8 ± 1.8 **</td>
</tr>
</tbody>
</table>
ACHN kidney cancer cell line

MUC1 transcript and protein levels increased after 6-24 h hypoxia

HIF-1α dependent (siRNA)
MUC1-dependent invasion and migration (siRNA)

Rat model of ischemia-reperfusion (1 h clamp and 2 h recovery)

MUC1 transcript and protein levels increased in in collecting ducts and distal tubules (RT-PCR and IHC).
MOUSE MODEL OF ISCHEMIA-REPERFUSION INJURY

Mouse surgery by Tim Sutton from Indiana Univ School of Medicine

![Graph showing blood creatinine levels during ischemia-reperfusion injury. The y-axis represents blood creatinine (mg/dL) with values ranging from 0 to 3.0. The x-axis represents clamp time (0 min, 19 min, 25 min), and the graph shows a significant increase in blood creatinine after 25 minutes of clamp time. A 24 h recovery period is indicated.]
MUC1 IS PROTECTIVE IN A MODEL OF ISCHEMIA-REPERFUSION INJURY

Surgery by Tim Sutton from Indiana Univ School of Medicine

![Graph showing blood creatinine levels](image)
MUC1 IS PROTECTIVE IN A MODEL OF ISCHEMIA-REPERFUSION INJURY

Surgery by Tim Sutton from Indiana Univ School of Medicine

Mechanism of protection?
MUC1 is induced in a proximal tubule HK-2 cell line by hydrogen peroxide

TUMOR CELL LINES:
MCF-7 – MUC1 induced 2-3 fold in 15 min with 0.4 mM peroxide
ZR-75-1 – MUC1 induced 2-3 in 1-2 h with 0.4 mM peroxide
HCT116 that lack MUC1 – SOD1, SOD2, catalase and GSH peroxidase induced 2-3 fold by transfection with MUC1; cellular ROS reduced

Yin – Kufe 2003 J Biol Chem 278 35458-64

Does MUC1 play a role in recovery?
Open

Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury

Jianchun Chen¹, Jian-Kang Chen¹ and Raymond C. Harris¹,²

¹Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA and ²Department of Veterans Affairs, Nashville, Tennessee, USA
MUC1 IS FOUND IN A CO-IP WITH EGFR AFTER ISCHEMIA-REPERFUSION INJURY

Co-IP EGFR and MUC1 in mouse kidney extracts

<table>
<thead>
<tr>
<th>IP: EGFR</th>
<th>4h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shm I-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shm I-R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| IB: EGFR | | |

| IB: MUC1 | | |

Kidney homogenate:
| IB: MUC1 | | |
MUC1 STIMULATES WOUND HEALING IN MDCK CELLS

LSP is a polymorphism of MUC1 (frequency 0.34) that alters splicing, produces a Long Signal Peptide, and ultimately adds nine amino acids to the N-terminus:

\[
\text{A P K P A T V V T} - \text{MUC1}
\]
APKPA TVVT – MUC1

Near perfect tandem repeats

(PD/ET/SRPAPGSTAPP/AAHGVTSA)

Autocatalytic cleavage within SEA module (sea urchin sperm protein, enterokinase and agrin)

Sequence highly conserved across species
Multiple sites for kinase and adaptor docking, Cys-palmitoylation

O-linked glycans

N-linked glycans

N

C

membrane
SUMMARY

MUC1 is protective against I-R injury
MUC1 is induced by I-R injury
MUC1 enhances wound healing in MDCK cells

MUC1 is induced by hypoxia in HK-2 cells
MUC1 is induced by hydrogen peroxide in HK-2 cells

COULD MUC1 BE A BIOMARKER FOR AKI?
COULD MUC1 BE A BIOMARKER FOR AKI?

CT-2 anti-MUC1 cytoplasmic tail

N-linked glycan

O-linked glycan

CT-2 ANTI-MUC1 CYTOPLASMIC TAIL
COULD MUC1 BE A BIOMARKER FOR AKI?

B27.29 anti-MUC1 tandem repeats

O-linked glycans

N-linked glycans

C

membrane
Relevant MUC1 Activities in Tumors

- H_2O_2 induces MUC1
- MUC1 induces SOD, catalase, GSH Prx
- MUC1 reduces cellular ROS
- MUC1 induces PHD3
- PHD3 modifies HIF-1α
- HIF-1α associates with VHL for Ub
- MUC1 substrate of EGFR
- MUC1 stabilizes EGFR and enhances signaling ERK1/2 and Akt

Injury Recovery

Role of MUC1 in Normal Kidney Protection?

HK2 cells:
- Does H_2O_2 induce MUC1?
- Does MUC1 induce enzymes and PHD3?
- Does MUC1 reduce ROS?

I-R mouse model (MUC1 KO vs control):
- MUC1 is protective
- Where does MUC1 increase? PT?
- Do enzymes increase? PHD3? HIF-1α?
- Does human MUC1 rescue the KO?

Repair?

HK2 cells:
- MUC1 enhances wound healing
- Does MUC1 co-IP with EGFR?
- Is ERK1/2 and Akt phosphorylation dependent on MUC1 (siRNA)?

I-R mouse model (MUC1 KO vs control):
- Does MUC1 co-IP with EGFR?
- MUC1-dependent ERK1/2 and Akt phosphorylation?
ACKNOWLEDGMENTS

Renal-Electrolyte Division
Carol Kinlough
Paul Poland
Ethan Block

Imaging Core
Gerry Apodaca
Gio Ruiz

Division of Pulmonary, Allergy and Critical Care Medicine
Mark Gladwin, MD
Sam Frizzell

Mayo Clinic, Scottsdale, AZ
Sandra Gendler

Indiana University School of Medicine
Tim Sutton, MD, PhD
Henry Mang

UT Southwestern Medical Center

FUNDING:
NIH R01
CTSI
Dialysis Clinics, Inc.
Genzyme Renal Innovations Program